

Multi-target Prediction with Trees & Tree Ensembles

Sašo Džeroski Jozef Stefan Institute, Ljubljana, Slovenia

Progetto standard co-finanziato dal Fondo europeo di sviluppo regionale Standardni projekt sofinancira Evropski sklad za regionalni razvoj

The basic Machine Learning task: Predictive modeling

Classification **Descriptive space Target space** Example 1 1 TRUE 0.49 0.69 Yes Example 2 2 FALSE 0.08 0.07 Yes Example 3 0.08 FALSE 0.07 No 1 Example 4 2 TRUE 0.49 0.69 Yes Example 5 TRUE 0.49 0.69 3 No Example 6 FALSE 0.08 0.07 4 Yes

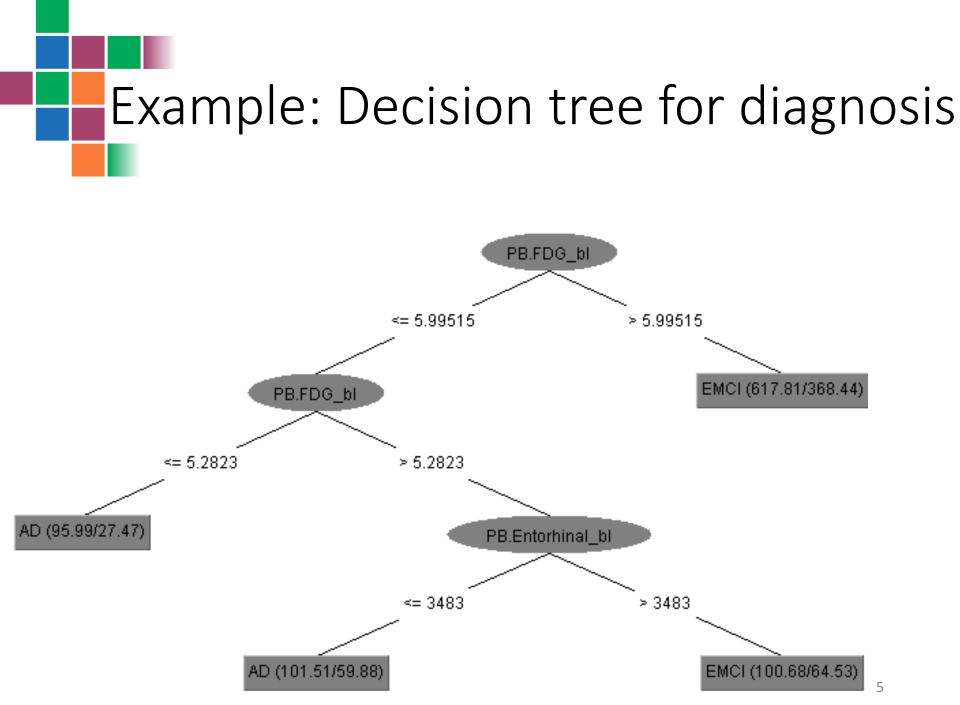
Regression **Descriptive space Target space** Example 1 0.69 0.84 1 TRUE 0.49 Example 2 0.08 0.07 0.75 2 FALSE Example 3 0.08 0.11 FALSE 0.07 1 Example 4 TRUE 0.49 0.52 0.69 2 Example 5 3 TRUE 0.49 0.69 0.35 Example 6 FALSE 0.08 0.07 0.78 4 ...

An example task of Predictive Modelling: Medical diagnosis

- Predictive models focus on a target variable and predict its value from the values of input variables
- Classical problem: Medical diagnosis
- An example: Neurodegenerative diseases
- Target variable: Diagnosis; Possible values:
 - CN Cognitively Normal (0)
 - SMC Significant Memory Concern
 - EMCI Early Mild Cognitive Impairment
 - LMCI Late Mild Cognitive Impairment
 - AD Alzheimer's Disease (4)

Example task: Descriptive vars.; Biomarkers for Alzheimer's

- 1. APOE4 Genetic variations of APOE4 related gene
- 2. FDG Positron emission tomography (PET) imaging results with [¹⁸F]fluorodeoxyglucose
- 3. AV45 Positron emission tomography (PET) imaging results with [¹⁸F]labeled amyloid imaging agent AV45
- 4. Ventricles
- 5. Hippocampus
- 6. WholeBrain
- 7. Entorhinal
- 8. Fusiform Fusiform gyrus
- 9. MidTemp Middle Temporal Gyrus
- 10. ICV Intracerebral volume [Volumetric data 4-10]



Another example of single-target predictive modeling (classification)

Task: Habitat suitability modeling

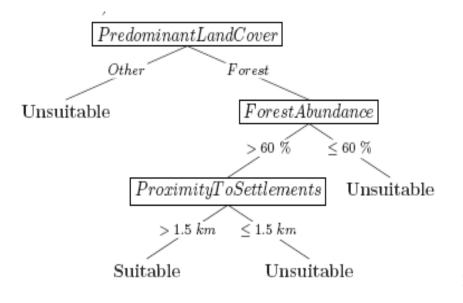
Input: Data on locations and habitat suitability

Location	PLC	FOREST-ABUNDANCE	PTS	Other EnvVariables	BBH
11	Forest	80	21.4		Yes
12	Forest	66	13.9		Yes
13	Forest	55	50.0		No
14	Forest	72	1.2		No
15	Grassland	6	19.1		No
16	Grassland	0	11.4		No
17	Wetland	3	5.8		No
18	Water	0	3.9		No

Another example of single-target predictive modeling (classification)

Task: Habitat suitability modeling

Output: Habitat suitability model



IF PREDOMINANT-LAND-COVER = Forest

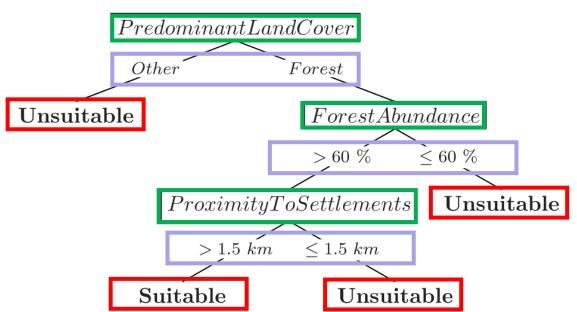
AND FOREST-ABUNDANCE > 60%

AND PROXIMITY-TO-SETTLEMENTS > 1.5 km

THEN BrownBearHabitat = Suitable

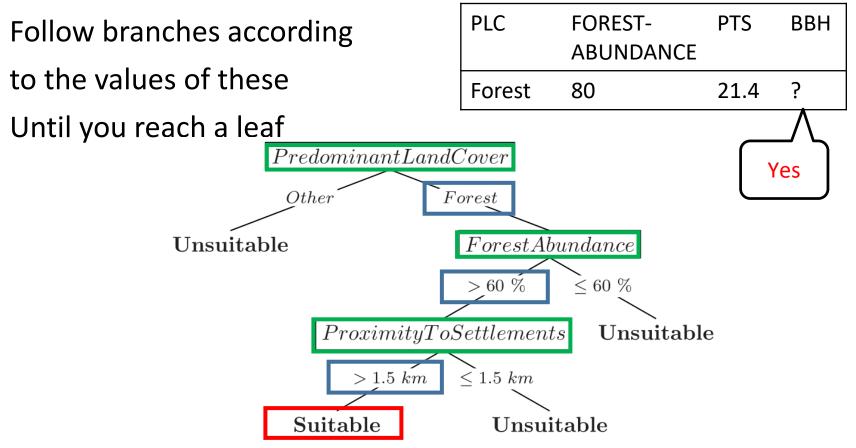
What is a decision tree?

- Hierarchicaly structured predictive model
- Nodes correspond to (environmental) variables
- Arcs possible values of the variables
- Leafs predictions for the target variable



Making a Prediction with a Decision Tree

Take as input values of attributes/ independent vars.





Machine Learning of Decision Trees

UNIONE EUROPEA EVROPSKA UNIJA

Progetto standard co-finanziato dal Fondo europeo di sviluppo regionale Standardni projekt sofinancira Evropski sklad za regionalni razvoj

Top-Down Induction of Decision Trees

To construct a tree T from a training set S:

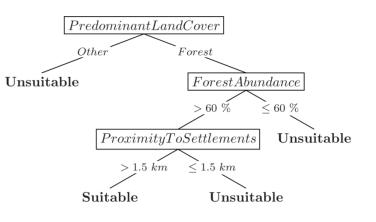
- If all the examples belong to the same class C, construct a leaf labeled C
- Otherwise:
 - Select the best attribute A with values v1, ..., vn, which reduces the most the impurity of the target
 - Partition S into S1, ..., Sn according to A
 - Recursively construct subtrees T1 to Tn for S1 to Sn
 - Result: a tree with root A and subtrees T1, ..., Tn

TDIDT Illustrated

Input: Set of learning examples S

- 1) Find the best split *t* (attribute value which results in the biggest reduction of variance considering the target variable)
- 2) Partition the data S into partitions S_v according to t
- 3) For each partition, if stopping criteria met (e.g., all of the examples in partition are of the same class), make a leaf, assign a (prototype) class to leaf
- 4) Otherwise, repeat 1) for each node

Location	n PLC	FOREST-ABUNDANCE	PTS	Other EnvVariables	BBH
11	Forest	80	21.4		Yes
12	Forest	66	13.9		Yes
]					
14	Forest	72	1.2		No





Mining Big and Complex Data: Dimensions of Complexity

UNIONE EUROPEA EVROPSKA UNIJA

Progetto standard co-finanziato dal Fondo europeo di sviluppo regionale Standardni projekt sofinancira Evropski sklad za regionalni razvoj

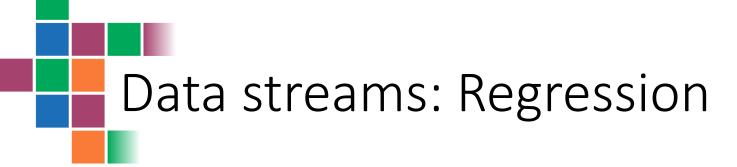
TRAIN

Mining Big and Complex Data

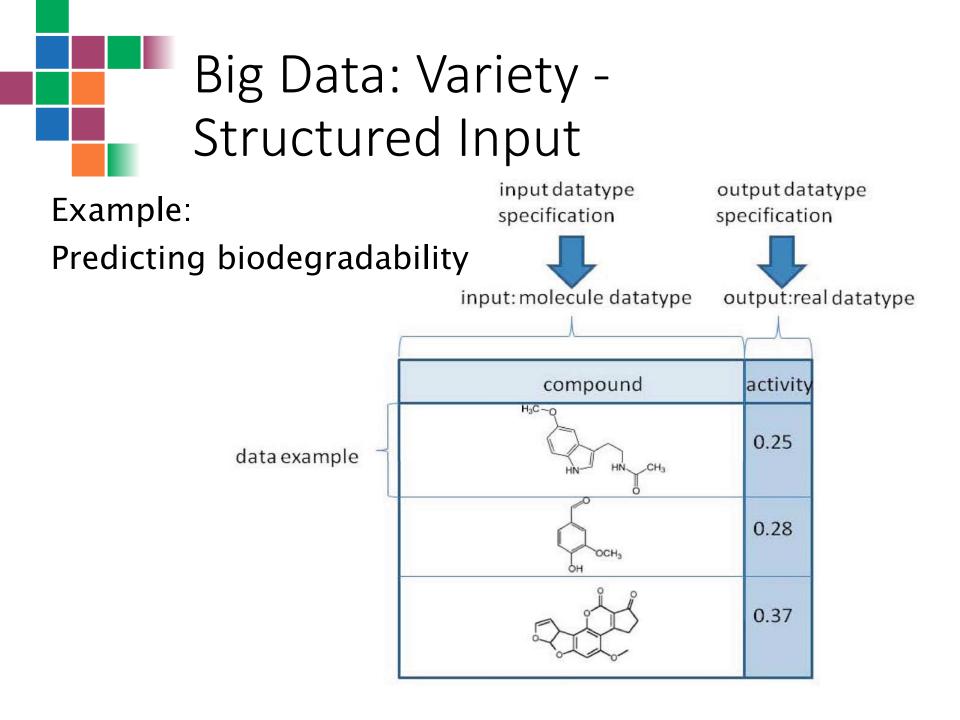
- What is big and complex data?
 - Volume & Velocity (Data Streams)
 - Variety (Structured Inputs and Structured Outputs)
- Variety:
 - Different types of data, different tasks of data mining
- MTP is a special case of structured output prediction
 - But you can have more complex outputs thah in MTP
- Combination with other dimensions of complexity
 - Semi-supervised ...
 - Data streams
 - Networked data

Big Data: Volume & Velocity

- Large number of columns (high dimensionality)
 - Need feature ranking/selection
- Large number of rows (massive data)
 - Need efficient data mining methods
- Streaming rows (data streams)
 - Need incrementality: Not all data available simultaneously
 - Data instances arrive at **high velocities**, in a **specific order** and their number is **potentially arbitrarily large**
 - The underlying concept (distribution) governing the data can change (concept drift)
 - We need **fast processing** (due to the high velocity)
 - The large and potentially infinite number of examples demands economical management of available memory ¹⁵



		Descriptive space									
E Exanpb een#5	1	TRUE	0.49	0.69	0.45						
Example n+1	4	FALSE	0.08	0.07	0.12						
Example n+2	6	FALSE	0.08	0.07	1.54						
Example n+3	8	TRUE	0.00	1.00	3.12						
Example n+4	6	TRUE	0.00	0.00	0.05						



Big Data: Variety -Structured Output

- Hierarchical classification: taxonomy of diatoms
- Classifying microscope images
- The input: A vector of feature values
- The output: Not a scalar value, rather a data structure

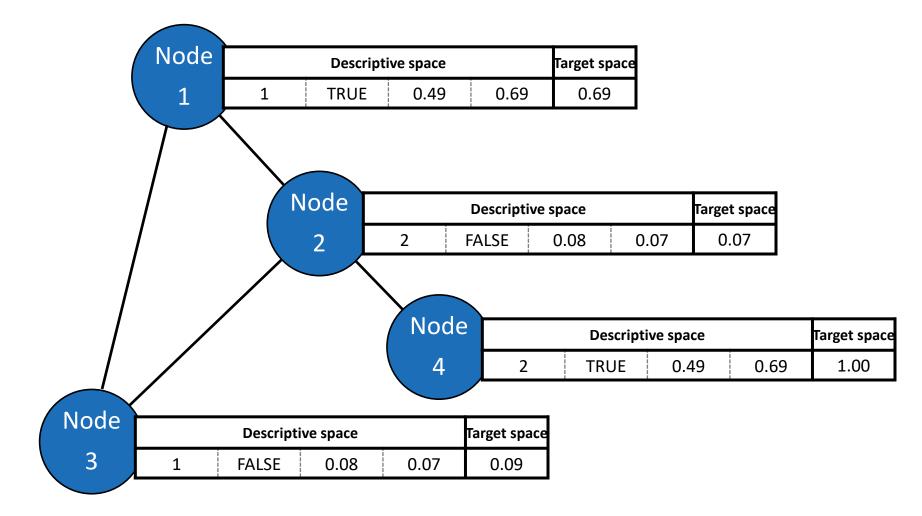
image	<u> </u>		res/d c shap		-	taxonomy		_		
C	48	24	59	66	37	 olivaceum	Eun	notia		Gomphonema
	36	25	53	45	15	 minutissimum	exigua		aris	olivaceum
	35	25	56	52	19	exigua			•	
]	bilunaris	mucophila	olivaceum minutissimum

Semi-supervised learning: Classification and regression

		Target space			
Example 1	1	TRUE	0.49	0.69	Yes
Example 2	2	FALSE	0.08	0.07	?
Example 3	1	FALSE	0.08	0.07	?
Example 4	2	TRUE	0.49	0.69	Yes
Example 5	3	TRUE	0.49	0.69	No
Example 6	4	FALSE	0.08	0.07	?
		······			

			Target space		
Example 1	1	TRUE	0.49	0.69	0.84
Example 2	2	FALSE	0.08	0.07	?
Example 3	1	FALSE	0.08	0.07	0.11
Example 4	2	TRUE	0.49	0.69	?
Example 5	3	TRUE	0.49	0.69	?
Example 6	4	FALSE	0.08	0.07	0.78

Data in context: Spatio-temporal, network



The Different Tasks of Multi-Target Prediction

UNIONE EUROPEA EVROPSKA UNIJA

Progetto standard co-finanziato dal Fondo europeo di sviluppo regionale Standardni projekt sofinancira Evropski sklad za regionalni razvoj

Weather prediction

- STC: Predicting the outlook (sunny, overcast, rain)
- STR: Predicting the temperature (in degrees Celsius)
- MTP: Predicting the weather
 - Outlook
 - Temperature
 - Humidity
 - Quantity of precipitation ...

Multi-target prediction

Classification

cation		Descripti	ve space	Target space			
Example 1	1	TRUE	0.49	0.69	Yes	Blue	Rain
Example 2	2	FALSE	0.08	0.07	Yes	Green	Sun
Example 3	1	FALSE	0.08	0.07	Yes	Blue	Cloudy
Example 4	2	TRUE	0.49	0.69	Yes	Green	Sun
Example 5	3	TRUE	0.49	0.69	No	Blue	Sun
Example 6	4	FALSE	0.08	0.07	Yes	Red	Cloudy
		••					

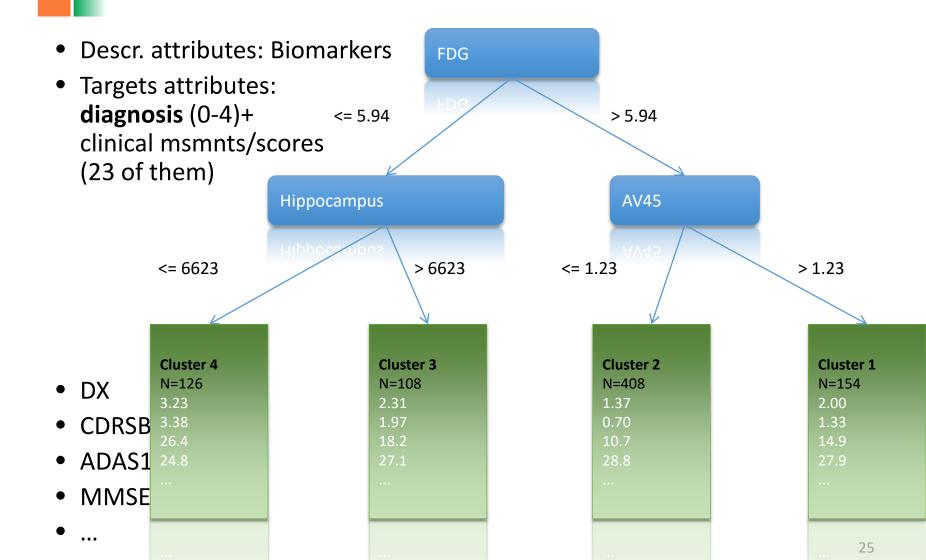
Regression

		Descripti	ve space			Target space	
Example 1	1	TRUE	0.49	0.69	0.68	0.60	3.91
Example 2	2	FALSE	0.08	0.07	0.56	0.99	7.59
Example 3	1	FALSE	0.08	0.07	0.10	1.69	7.57
Example 4	2	TRUE	0.49	0.69	0.08	0.77	8.86
Example 5	3	TRUE	0.49	0.69	0.11	3.51	2.50
Example 6	4	FALSE	0.08	0.07	0.43	2.10	8.09
		•••••••••••••••••••••••••••••••••••••••	•		•••	•••	••••

Example MTR task: Target vars.; Clinical scores for Alzheimer's

- 1. CDRSB Clinical Dementia Rating Sum of Boxes
- 2. ADAS13 AD assessment scale
- 3. MMSE Mini Mental State Examination
- 4. RAVLT (immediate, learning, forgetting, perc. forgetting) Rey Auditory Verbal Learning Test (4 features)
- 5. FAQ Functional Assessment Questionnaire
- 6. MOCA Montreal Cognitive Assessment
- EcogPt (Memory, Language, Visuospatial Abilities, Planning, Organization, Divided Attention, Total score) – Everyday cognition questionnaire – filled in by patient (7 features)
- Ecog**SP** (Memory, Language, Visuospatial Abilities, Planning, Organization, Divided Attention, Total score) – Everyday cognition questionnaire – filled in by study parter (7 features)

Example MTR model



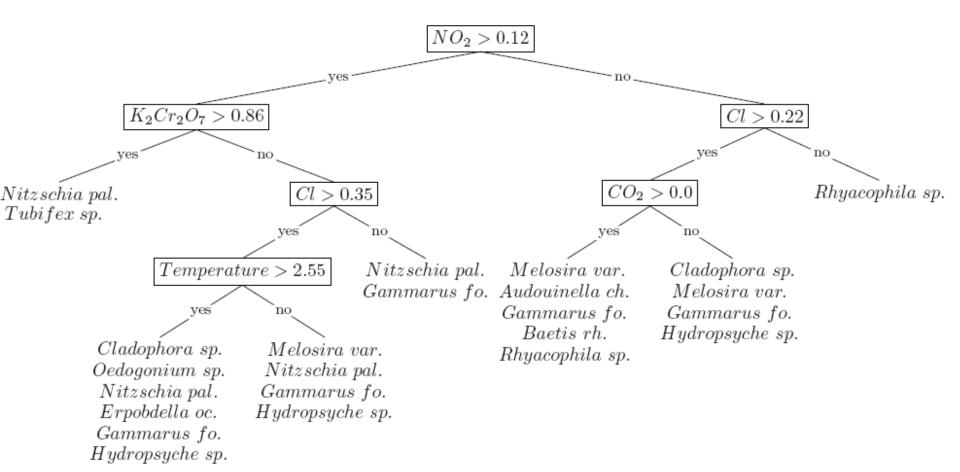
Multi-Target Classification & **Multi-Label** Classification

- Learning models that simultaneously predict several nominal/binary target variables
- Input: A vector of descriptive variables
- Output: A vector of several nominal/binary targets

	Descriptive variables						Descriptive variables Target variables													
Sample ID	Temperature	K ₂ Cr ₂ O ₇	NO2	CI	CO ₂		Cladophora sp.	Gongrosira incrustans	Oedogonium sp.	Stigeoclonium tenue	Melosira varians	Nitzschia palea	Audouinella chalybea	Erpobdella octoculata	Gammarus fossarum	Baetis rhodani	Hydropsyche sp.	Rhyacophila sp.	Simulim sp.	Tubifex sp.
ID1	0.66	0.00	0.40	1.46	0.84		1	0	0	0	0	1	1	0	1	1	1	1	1	1
ID2	2.03	0.16	0.35	1.74	0.71		0	1	0	1	1	1	1	0	1	1	1	1	1	0
ID3	3.25	0.70	0.46	0.78	0.71		1	1	0	0	1	0	1	0	1	1	1	0	1	1

Multi-Label Classification Example

• A decision tree for multi-label classification

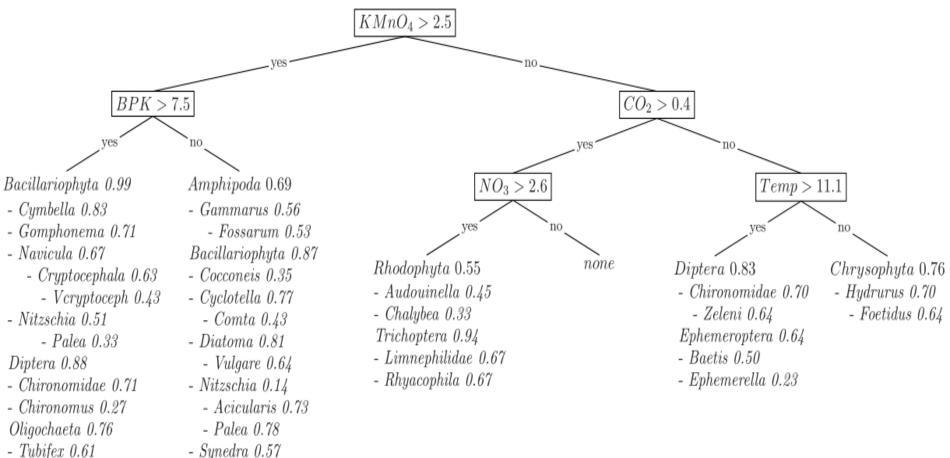


Hierarchical multi-label classification

		Descripti	ve space		Target space
Example 1	1	TRUE	0.49	0.69	1 1/1 1/2 1/1/1 1/1/2 1/2/1
Example 2	2	FALSE	0.08	0.07	1 1/1 1/2 1/1/1 1/2/1 1/2/2
Example 3	1	FALSE	0.08	0.07	
Example 4	2	TRUE	0.49	0.69	$\begin{array}{c} 1\\ 1/1 & 1/2\\ 1/1 & 1/2\\ 1\\ 1/1 & 1/2\\ 1/1 & 1/2\\ 1/3\end{array}$

Hierarchical multi-label classif.

Predicting community structure (consider taxonomy)

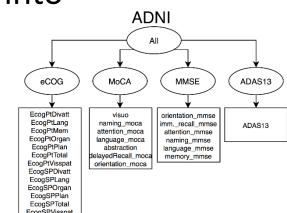


- Tubifex 0.61

Hierarchical multi-target regression

In HMLC, the binary targets are organized into a hierarchy (tree or DAG)

In HMTR, the continuous targets are organized into a hierarchy



- The target space for the ADNI dataset has a hierarchical structure: The clinical scores are hierarchically organized
- MMSE Mini Mental State Examination (orientation, immediate recall, attention, naming, language, memory)
- MOCA Montreal Cognitive Assessment (visuo, naming, attention, language, abstraction, delayed recall, orientation) 30

Mining Big and Complex Data: Combining Complexities

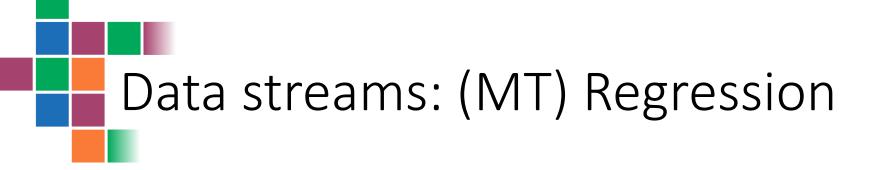
UNIONE EUROPEA EVROPSKA UNIJA

Progetto standard co-finanziato dal Fondo europeo di sviluppo regionale Standardni projekt sofinancira Evropski sklad za regionalni razvoj

SSL+SOP: Incomplete Annotations

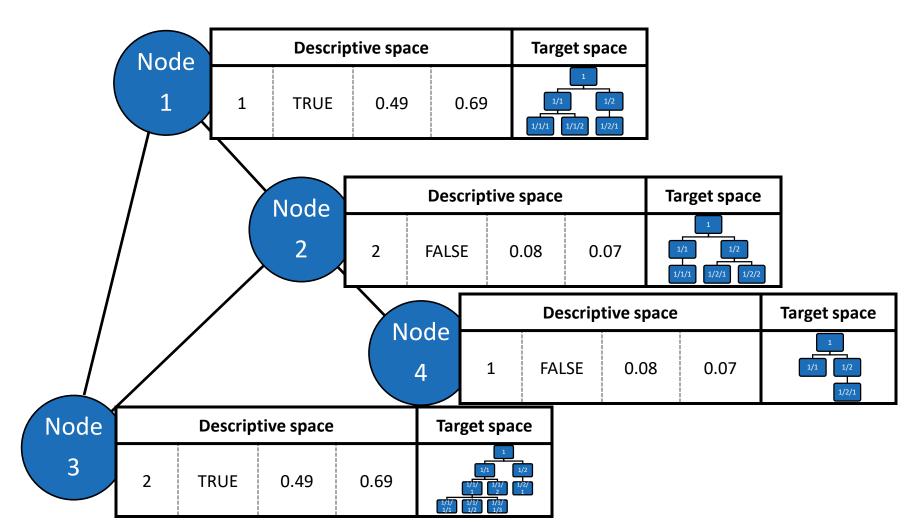
Semi-supervised multi-target regression

		Descripti	ve space	Target space			
Example 1	1	TRUE	0.49	0.69	?	0.60	3.91
Example 2	2	FALSE	0.08	0.07	0.56	0.99	7.59
Example 3	1	FALSE	0.08	0.07	?	?	?
Example 4	2	TRUE	0.49	0.69	0.08	0.77	8.86
Example 5	3	TRUE	0.49	0.69	0.11	?	?
Example 6	4	FALSE	0.08	0.07	0.43	2.10	8.09
•••		••	•		•••	•••	• • • • • • • • • • • • • • • • • • •



	Descriptive space									
Ekaanppelen#5	1	TRUE	0.49	0.69	0.45					
Example n+1	4	FALSE	0.08	0.07	0.12					
Example n+2	6	FALSE	0.08	0.07	1.54					
Example n+3	8	TRUE	0.00	1.00	3.12					
Example n+4	6	TRUE	0.00	0.00	0.05					
		••••								

	Descriptive space				Target space		
Elisampheten#5	6	TRUE	0.49	0.69	0.58	0.00	3.99
Example n+1	4	FALSE	0.08	0.07	0.10	1.69	7.57
Example n+2	6	FALSE	0.08	0.07	0.08	0.77	8.86
Example n+3	8	TRUE	0.00	1.00	0.11	3.51	2.50
Example n+4	6	TRUE	0.00	0.00	0.43	2.10	8.09
••••					•••		•••





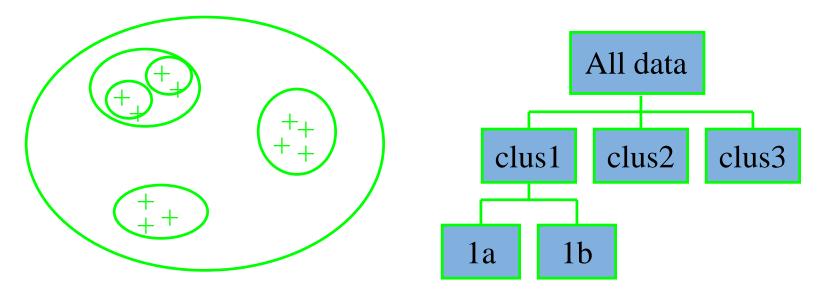
Predictive Clustering for Multi-Target Prediction

UNIONE EUROPEA EVROPSKA UNIJA

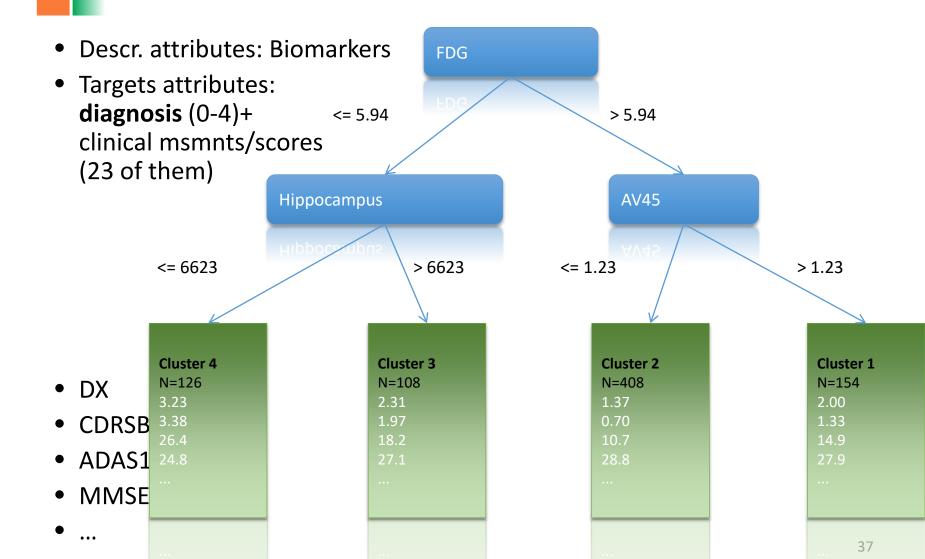
Progetto standard co-finanziato dal Fondo europeo di sviluppo regionale Standardni projekt sofinancira Evropski sklad za regionalni razvoj

Partition a set of objects into clusters of similar objects

- High similarity of objects within individual clusters, low similarity between objects from different clusters
- Minimize intra-cluster variance (ICV)
- Distance/similarity measure in the example space



Example predictive clustering tree



Top-down induction of PCTs

To construct a tree T from a training set S:

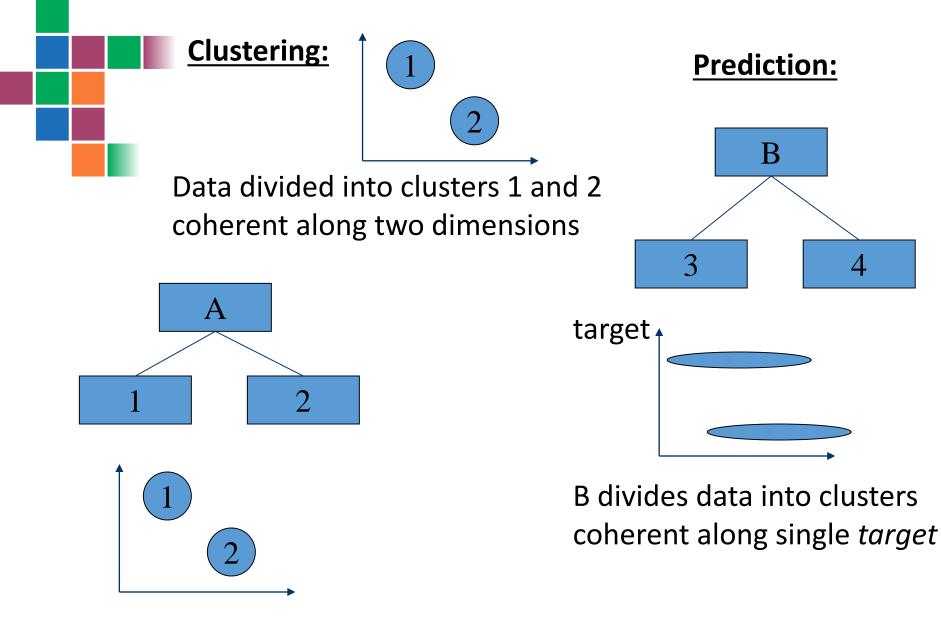
- If the examples in S have low variance, construct a leaf labeled target(prototype(S))
- Otherwise:
 - Select the best attribute A with values v1, ..., vn, which **reduces the most the variance** (*measured according to a given distance function d*)
 - Partition S into S1, ..., Sn according to A
 - Recursively construct subtrees T1 to Tn for S1 to Sn
 - Result: a tree with root A and subtrees T1, ..., Tn

Learning PCTs

- Recursively partition data set into subsets (clusters) with low intra-cluster variance
 - Variance = avg. squared distance to prototype

$$ICV(S) = \sum_{y_j \in S} d(y_j, p(S))^2$$

- For the variance, the distance is measured
 - In standard clustering, along all dimensions
 - In prediction, along a single target dimension
 - In predictive clustering, along a structured target, e.g., several target dimensions



Predictive clustering: A divides data into clusters 1 and 2 coherent along two dimensions

Selecting the best test in a PCT

- Select the test that maximizes variance reduction
- Calculated in line 4

procedure BestTest(E)

1:
$$(t^*, h^*, \mathcal{P}^*) = (none, 0, \emptyset)$$

- 2: for each possible test t do
- 3: $\mathcal{P} = \text{partition induced by } t \text{ on } E$

4:
$$h = Var(E) - \sum_{E_i \in \mathcal{P}} \frac{|E_i|}{|E|} Var(E_i)$$

5: **if** $(h > h^*) \land Acceptable(t, \mathcal{P})$ **then**

6:
$$(t^*, h^*, \mathcal{P}^*) = (t, h, \mathcal{P})$$

7: return (t^{*}, h^{*}, P^{*})

Multi-target regression

- The variance function for MTR
- Is the sum of the variances
- Across all targets

$$Var(E) = \sum_{i=1}^{T} Var(Y_i).$$

- Normalization is in order
- So that variances are comparable across targets

Ensembles of PCTs

Simulium: 3

Simulium: 0

• An ensemble is a set of predictive models, whose predictions are combined [to achieve performance better than that of individual/base predictors] Descriptive attributes Target attributes Descriptive attributes Target attributes

										#	1	Docc	rintivo att	rihutoc			Targot att	trihutoc		
								_		_	#	п	occrintive	attribu	itoc		Tardo	t attributo	c	
#	Des	criptive	attrib	utes		Target a	ttribute	es			#		Descrip	tivo att	ributo	ic .	Ta	urdat attrib	uitoc	
	KMnO ₄	CO ₂		K ₂ Cr ₂ O ₇	Baetis	Tubifex		Simulium				#	Des	criptive	attrik	outes		Target at	ttribut	es
1	0.66	0.15		2.7	3	0		3					KMnO ₄	CO ₂		K ₂ Cr ₂ O ₇	Baetis	Tubifex		Simulium
2	2.05	0.56		2.8	0	0		5	10		1	1	0.66	0.15		2.7	3	0		3
										10		2	2.05	0.56		2.8	0	0		5
:	:	:		:	:	:		:		10	10	:	:	:		:	:	:		:
060	1.3	1.23		1.1	5	3		1				1060	1.3	1.23		1.1	5	3		1
				A sind	مام مام	cision ⁻	troo			Δn			le of c				5	5		-
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 > 0.16	<b>)</b>	Baetis: 1 Tubifex: 9  Simulium:	5	Baet	Bae Baetis: aetis: 0	0, ± 0,1 0, ± 0,1 0,2 > 0.16		Baetis: 1 Baetis: 1 Baetis: 1 Ubifex: 5  mulium: 5	etis: 1 : 1 5 : 5 5					
					tis: 0		Baetis			Tubif  Simuli	ex: 5 . : 3	: 3	Tubifex: 1 : 0 Simulium: 0	. 0						
				Tubi	rex: 5		Tubife	(: 1											43	



# Relating the Environment and the Biota: From Habitat models to Community composition





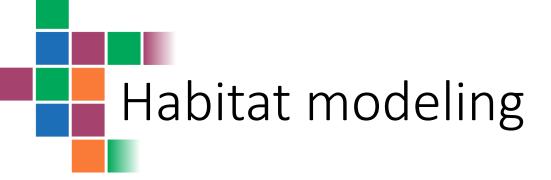
UNIONE EUROPEA EVROPSKA UNIJA

Progetto standard co-finanziato dal Fondo europeo di sviluppo regionale Standardni projekt sofinancira Evropski sklad za regionalni razvoj

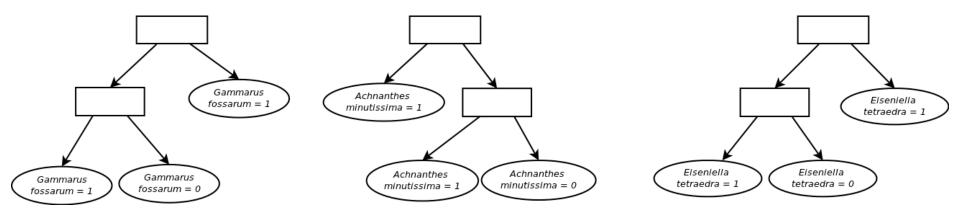
### Environment <-> Biota

- Predict the biota (or specific components of it)
- At a given site
- From characteristics of the environment at the site
- E.g. predict river water biota from water properties

		Desc	riptiv	e vari	ables	Target variables													
Sample ID	Temperature	K ₂ Cr ₂ O ₇	NO2	CI	CO ₂	Cladophora sp.	Gongrosira incrustans	Oedogonium sp.	Stigeoclonium tenue	Melosira varians	Nitzschia palea	Audouinella chalybea	Erpobdella octoculata	Gammarus fossarum	Baetis rhodani	Hydropsyche sp.	Rhyacophila sp.	Simulim sp.	Tubifex sp.
ID1	0.66	0.00	0.40	1.46	0.84	 1	0	0	0	0	1	1	0	1	1	1	1	1	1
ID2	2.03	0.16	0.35	1.74	0.71	 0	1	0	1	1	1	1	0	1	1	1	1	1	0
ID3	3.25	0.70	0.46	0.78	0.71	 1	1	0	0	1	0	1	0	1	1	1	0	1	1



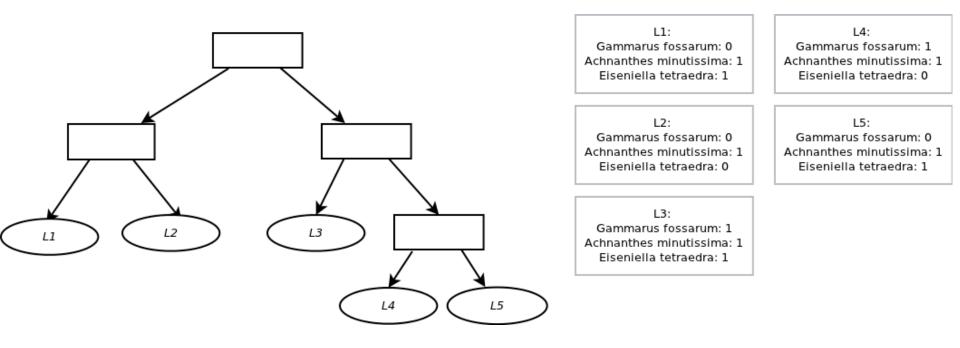
 Model the presence & absence (abundance) of each species separately



• Binary Classification (Regression)

### Predicting species composition

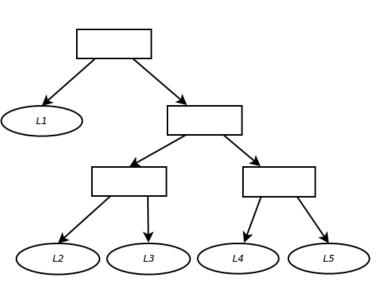
• One model for all the species at once



• Multi-target classification/regression

### Predicting community structure

 One model for all of the species at once, additionally using the taxonomical hierarchy



L1:	L3:
Amphipoda : 1	Amphipoo
Gammarus : 1	Gamma
Gammarus fossarum : 1	Gami
Gammarus Iacustris : 0	Gami
Bacillariophyta : 1	Bacillario
Achnanthes : 1	Achnar
Achnanthes minutissima: 1	Achr
Eiseniella : 0	Eisenie
Eiseniella tetraedra: 0	Eisen
L2:	L4:
Amphipoda : 1	Amphipod

Gammarus : 1 Gammarus : 1 Gammarus fossarum : 1 Gammarus Iacustris : 1

Bacillariophyta : 0 Achnanthes : 0 Achnanthes minutissima: 0 Eiseniella : 0 Eiseniella tetraedra: 0 Amphipoda : 1 Gammarus : 1 Gammarus fossarum : 0 Gammarus Iacustris : 1

Bacillariophyta : 1 Achnanthes : 1 Achnanthes minutissima: 1 Eiseniella : 0 Eiseniella tetraedra: 0

Imphipoda : 1 Gammarus : 1 Gammarus fossarum : 1 Gammarus Iacustris : 0

Bacillariophyta : 1 Achnanthes : 1 Achnanthes minutissima: 1 Eiseniella : 1 Eiseniella tetraedra: 1

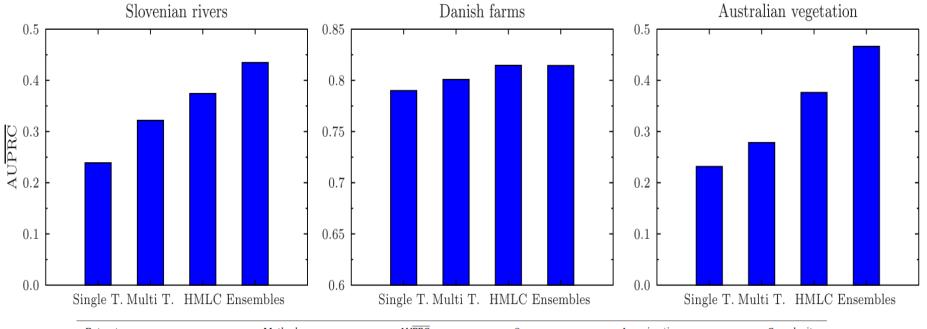
#### L5:

Amphipoda : 1 Gammarus : 1 Gammarus fossarum : 1 Gammarus lacustris : 1

Bacillariophyta : 1 Achnanthes : 0 Achnanthes minutissima: 0 Eiseniella : 1 Eiseniella tetraedra: 1

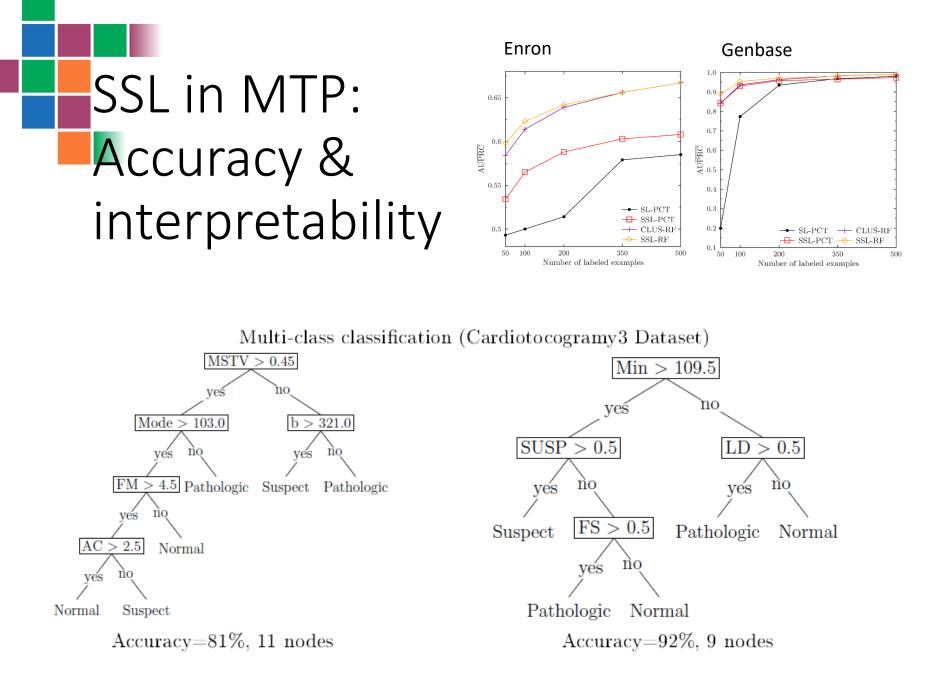
• Hierarchical multi-label classification

# Community structure: Overall results



Dataset	Method	AUPRC	$O_S$	Learning time	Complexity
	Single-label	0.239	0.692	23.3	15,336
Slovenian rivers	HSC	0.309	0.591	10.2	25,035
	Multi-label	0.322	0.007	9.4	1
	HMC	0.374	0.132	0.6	37
	Single-label	0.790	0.099	3.7	2605
Danish farms	HSC	0.808	0.083	1.3	2873
	Multi-label	0.801	0.112	0.7	265
	HMC	0.815	0.065	0.4	259
	Single-label	0.232	0.715	14,888.2	482,745
Australian vegetation	HSC	0.306	0.591	76,023.2	648,970
	Multi-label	0.278	0.684	4639.5	23,699
	HMC	0.376	0.180	313.5	1279

49



(c) SL-PCT, 50 labeled examples

(d) SSL-PCT, 50 labeled and 2076 unlabeled examples



# Multi-Target Prediction for Virtual Compound Screening





UNIONE EUROPEA EVROPSKA UNIJA

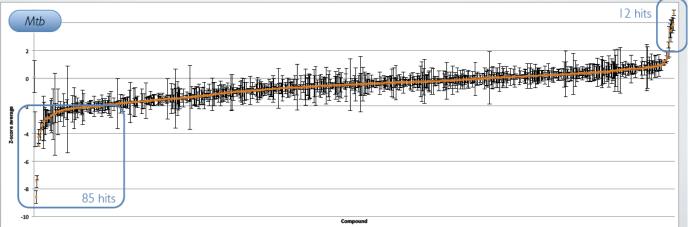
Progetto standard co-finanziato dal Fondo europeo di sviluppo regionale Standardni projekt sofinancira Evropski sklad za regionalni razvoj

## Virtual compound screening

- Descriptive variables refer to compound structure
  - Functional groups
  - Fingerprints
  - Bulk properties
- May also describe the compound in terms of the proteins it targets (e.g. from PubChem)
  - Their functional annotations
  - Pathways they are involved in
  - Proteins that the targets interact with (and/or their functional annotations, pathways they are involved in)
- Target variables describe compound activity and toxicity

## Host-targeted Drugs for MTB (Tuberculosis) and STM (Salmonella)

- Library of compounds
  - LOPAC library Library Of Pharmacologically Active Compounds
    - 1260 compounds
  - Well-characterized compounds, many already applied in clinical practice for a range of conditions
- Flow cytometry (FACS) measured reduction in bacterial load
  - MelJuSo cells infected with Mycobacterium tuberculosis at MOI 10 Mtb
  - HeLa cells infected with Salmonella typhimurium at MOI 10 Stm

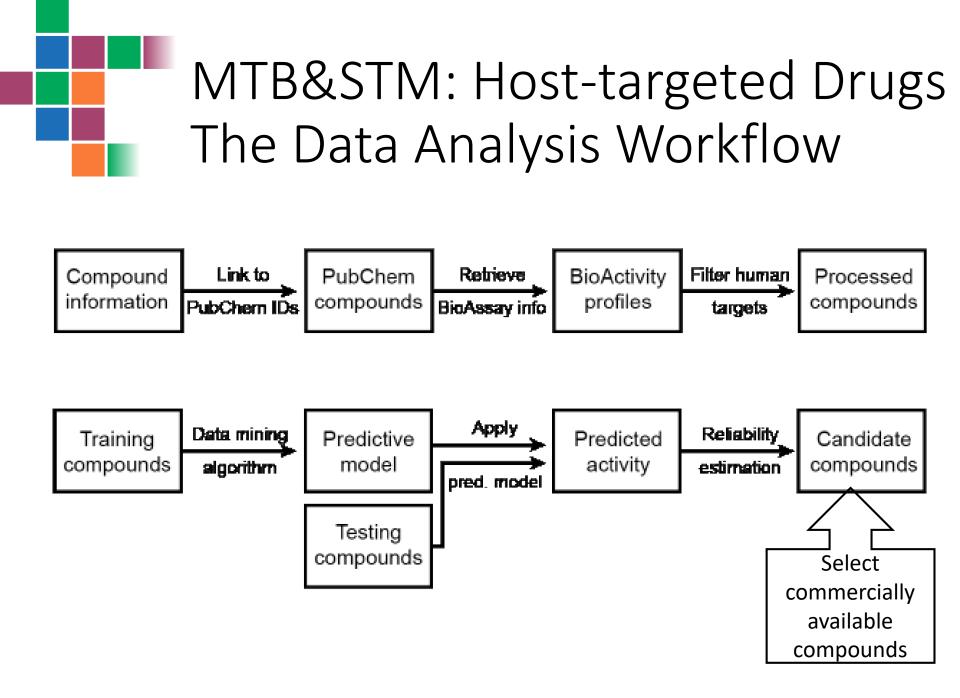


53

# MTB&STM: Host-targeted Drugs

#### • Dataset

- 964 compounds were found active on human protein targets
- 711 distinct protein targets were identified
- Each compound is described with (the following features)
  - the respective protein targets
  - functional annotations of the respective protein targets
  - functional annotations of both the respective protein targets and the proteins they interact with
- Targets: bacterial load reduction, host cell viability
- Example antecedents in a rule from a tree:
  - IF compound targets the protein AAL 06595 THEN ...
  - IF a protein with function GO0002637 is targeted THEN ...
  - THEN bacterial load effect = -5.269 & host cell effect = 0.0475



### MTB&STM: Host-targeted Drugs Results

56

- Greatly increased proportions of hit compounds
  - 5 out of 9 (55.6%) for Mtb and
  - LOPAC primary screen (90 out of 1260 (7.1%) for *Mtb*
- The *in silico* predictive model successfully identified active compounds *de novo*

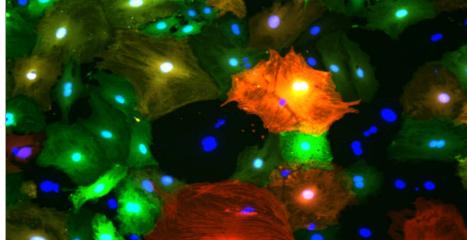
Abbr.	Compound name	Alternative name(s)	Primary sceen z-score	Rescreen z-score	Activity
Mycob	acterium tuberculosis				
SU	SU 6656	2,3-Dihydro-N,N-dimethyl-2-oxo-3-[(4,5,6,7- tetrahydro-1H-indol-2-yl)methylene]-1H-indole- 5-sulfonamide	-5.79	-10.51	Src family kinase inhibitor
Q	Quinacrine dihydrochloride		-5.25	-9.90	MAO inhibitor
SB	SB 216763	3-(2,4-Dichlorophenyl)-4-(1-methyl-1H-indol-3- yl)-1H-pyrrole-2,5-dione	-6.02	-8.29	GSK-3 kinase inhibitor
G	GW5074	3-(3, 5-Dibromo-4-hydroxybenzylidine-5-iodo- 1,3-dihydro-indol-2-one)	-4.86	-6.98	Raf1 kinase inhibitor
T494	Tyrphostin AG 494	N-Phenyl-3,4- dihydroxybenzylidenecyanoacetamide	-3.83	-6.93	EGFR kinase inhibitor
L	3',4'-Dichlorobenzamil hydrochloride	L-594,881	-3.87	-5.13	Na⁺/Ca2⁺ exchanger inhibitor
Н	Haloperidol		-3.77	-2.96	D2/D1 dopamine receptor antagonist

Analyzing data from High-contents Screens

- Compounds described by fingerprints
- Generated by open-source chemoinformatics SW library RDkit
- The FCFP2 fingerprits were used (1024 features)
- Also considered profiles of targeted proteins
- These are the attributes
- Assays photographed under the microscope
- Features extracted from images
- These are then the targets

Reducing fibrosis in myocardial infarction

- High content screen using a library of 640
  FDA approved drugs (ENZO)
- Identify drugs to reduce fibrosis in myocardial infarction
- Screen used murine cardiac fibroblasts which differentiate into myofibroblasts in culture, expressing increased alpha SMA-RFP and collagen-alpha1-EGFP
- Targets: Intensity of
  - alphaSMA
  - Collagen
- Attributes
  - Fingerprints



## Testing the predictions

- Some domain-specific knowledge / constraints applied: Predicted compounds filtered for FDA approved drugs that are not corticosteroids
- SMILE strings used in Chemmine to identify substances with structural similarity to non commercial compounds with high predicted values
- Three related compounds identified which are described in literature to have an anti-fibrotic effect
- Four related compounds identified which were not previously described to have an anti-fibrotic effect
- Tested in the wet-lab and one works really well 😳



- Exciting new technology for mining big and complex data
- Can handle different aspects of complexity
  - Different types of structured outputs
  - Big data and data streams
  - Partially annotated data, network data
- Efficient, works fast!

[What's the environmental footprint of deep learning?]

- Can produce accurate models
- Can produce understandable models