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1. Introduction  

In the first period of the project, we focused on understanding the bioanalytical workflows              
used to analyze screening data. Our aim was to familiarize ourselves with the typical              
screening methods and some representative data that come out of the screenings as well              
as data from auxiliary sources that can contribute to better understanding of the results.              
The workflows for analyzing data generally consist of (1) data understanding, (2)            
pre-processing, (3) machine learning task identification, (4) machine learning method          
selection and application, (5) visualization and understanding of the models and results            
and (6) deployment of the models and the results for practical use. The understanding of               
the typical workflows used for screening data analysis form the framework for design and              
development of IT services to support and facilitate knowledge discovery from screening            
data. 

More specifically, we analyzed data coming from several screens investigating: (1) heart            
cell regeneration and (2) fibroblast and heart smooth muscle cell proliferation. From            
technological perspective, we analyzed data from compound screens with the aim to            
identify potentially effective drugs and data from miRNA screens with the aim to find a               
potential targets. 

2. Machine learning tasks, datasets and software 
We analyzed two sets of data provided by the ICGEB. 

● The measurements of Alpha Smooth Muscle Actin (SMA) and Collagen intensities           
in ​mice hearts ​after the administration of different drugs. The goal was to discover              
new (previously untested) compounds that would lower the intensity of Alpha SMA. 

● The measurements of fibroblast and heart smooth muscle cell proliferation after the            
administration of different miRNAs. We tried to identify which genes or biological            
pathways can be targeted to decrease the proliferation of smooth muscle cells,            
while not affecting the proliferation of fibroblast. 
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For our analysis, we used the following tools and online databases. 

● CLUS system for predictive clustering (​https://sourceforge.net/projects/clus/​) was       
used to construct predictive clustering trees and ensembles thereof for          
classification, regression and multi-target regression tasks, and to perform feature          
ranking for those tasks. 

● PubChem database (​https://pubchem.ncbi.nlm.nih.gov/​) was used to find protein        
and gene targets of compounds. 

● ChEMBL database (​https://www.ebi.ac.uk/chembl/​) was used to get structural        
information for compounds and additional information for drugs. 

● MiRTarBase database (​http://mirtarbase.mbc.nctu.edu.tw/php/index.php​) was used     
to find gene targets of miRNAs. 

● KEGG database (​https://www.genome.jp/kegg/​) was used to find the        
pathways-gene associations for homo sapiens. 

3. Analysis of Alpha SMA and Collagen screening data 
Our plan for discovering novel compounds that lower the Alpha SMA intensity consisted of              
three parts. The first part was to use the screening data to learn a predictive model, that                 
would take a compound’s description as an input and predict its effect on the Alpha SMA                
intensity. Second, we needed to find a database of compounds to apply the predictive              
model on and search for interesting candidates. Third, due to the massive amount of              
different compounds that exist, we needed a way to filter/prioritize the candidates. 

 

 

First, we had to decide how to describe the molecules in a way that machine learning                
algorithms understand. One option is to describe compounds with their bioactivity profiles.            
This means that each compound is described with an n-dimensional binary vector, where             
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every component corresponds to one protein. If a compound is active on a specific protein,               
the corresponding component of the vector is 1, otherwise it is 0. To construct the               
bioactivity profiles of compounds one has to search a substantial amount of protein             
screening data to collect the necessary information. Online databases such as PubChem            
or ChEMBL are popular sources for this and we decided to use them as well. Another                
option to describe compounds are structural molecular descriptors. Molecules are typically           
represented as graphs, and over the years, multiple descriptors derived from their            
structure were developed. Among them, Extended Connectivity Fingerprints (ECFPs, Fig          
1) are often used and typically prove well suited for predicting biological properties of              
molecules. With ECFPs, compounds are again described with binary vectors. Each vector            
component corresponds to a set of substructures. If that component has value 1, it means               
that at least one of those substructures is present in the molecule. We decided to try both                 
bioactivity profiles and ECFPs to describe the molecules.  

The screening data we received included the measurements of Alpha SMA and Collagen             
intensities for 640 compounds. The compounds were identified with CAS numbers. To            
search online databases for the SMILES strings detailing their structure and screens to             
construct their bioactivity profile, we had to match CAS numbers with other identifiers             
(ChEMBL and PubChem IDs). For this we used Chemical Translation Service           
(​http://cts.fiehnlab.ucdavis.edu/​) and some manual checking. 

  

 

For predictive models, we decided to use bagging ensembles (Fig 3) of predictive             
clustering trees (PCTs). Predictive clustering trees are constructed with a greedy top-down            
induction algorithm that recursively splits the data according to the attribute values. The             
algorithm selects the split that maximizes the variance reduction of the target variables.             
PCTs are a generalization of standard decision trees that supports structured output            
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prediction and semi-supervised learning. In our case, the attributes are binary vectors            
(bioactivity profiles or ECFPs) and the target variables are Alpha SMA and collagen             
intensities. When no suitable test is found (too few examples or too low variance              
reduction), a leaf is created where the mean value is stored and used for prediction.               
Ensembles of trees improve the predictive performance over single trees: multiple trees            
are built on bootstrapped samples of the learning set. Predictions of individual trees are              
then aggregated (averaged) into the final prediction. 

We decided to use tree-based models because they have several nice properties. 

● Individual trees are interpretable: they can be inspected so that it is clear how a               
prediction was made. 

● When used in an ensemble they offer state of the art performance. 
● When used in an ensemble they can also be used to rank the attributes according               

to their importance for predicting the target. 

 

Performance was measured with mean squared error (MSE): , where y and y’        (y )Σ i − y′i
2      

are true and predicted values, respectively. To estimate the MSE we used 10-fold cross              
validation. The image above shows the distribution of the two target variables. The mean              
absolute values of bagging ensembles of regression trees were 0.0836 for Collagen and             
0.0871 for Alpha SMA (Fig 4).  
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Since the goal was to identify interesting candidates for wet-lab experiments, we also             
wanted to investigate the reliability of individual predictions. For this we looked at the              
standard deviation of predictions of individual trees in the ensemble - if ensemble             
members agree with each other, we expect the prediction to be more accurate. We              
showed there was correlation between lower standard deviation of predictions of individual            
trees and lower prediction error of the ensemble prediction (Fig 5). 
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We then used the model constructed on all 640 learning examples to predict the Alpha               
SMA and Collagen intensities of all other compounds in the ChEMBL database (over 1.7              
million in total). Experts at ICGEB decided that Alpha SMA intensity is a more reliable               
measurement than collagen, so we used it as a main criterion for sorting the candidates.               
Based on the distribution of Alpha SMA intensity measurements, we discarded all the             
compounds with predicted intensity above 0.75, leaving us with 622 interesting candidates.            
To make the inspection of candidates easier, we also clustered them. We repeatedly             
selected the candidate with the lowest predicted intensity as the prototype, and put all              
other candidates similar enough to the prototype to its cluster. Among the remaining             
candidates the next prototype was selected, and so on. For similarity we used the              
Tanimoto index, calculated from the ECFPs. With the similarity threshold set to 0.5, this              
resulted in 34 clusters of candidates. Where available, we also included the maximum             
phase achieved in clinical trials of the candidates, as found in ChEMBL. 

4. Analysis of fibroblast and heart smooth muscle cell 
proliferation data 
We received measurements of effects of miRNAs on fibroblast and heart muscle cell             
proliferations. For heart muscle cell proliferation, two rounds of screening were performed.            
In total, the data included 2046 unique miRNAs, 2042 of them were screened on muscle               
cells and 856 on fibroblast. Among them, 852 were part of all 3 screens, whereas the rest                 
are partially labeled. 

 

miRNA ID fibroblast muscle R1 muscle R2 

hsa-miR-1180-3p 0.00 0.51 0.03 

hsa-miR-99b-5p 0.49 0.48 0.23 

hsa-miR-98-3p ? 0.10 0.19 

hsa-let-7c-3p 0.48 ? ? 

... 
  

There were three main avenues of analysis of this data that we explored. 

1. We described each miRNA with the genes it targets and tried to determine which              
genes are important for fibroblast and muscle cell proliferation with interpretable           
predictive models and feature ranking. 

2. We used a model learned on the miRNA screening data to try and find drugs that                
would reduce the cell muscle proliferation while not affecting the fibroblast           
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proliferation. This is possible because both miRNAs and drugs can be described in             
the same space (with gene targets). 

3. We tried an alternative description of miRNAs using the biological pathways they            
affect, and repeated the analysis we performed with genes. 

 

 

4.1 Gene target analysis 

We used the miRTarBase database to find gene targets of the miRNAs. It contains 2599               
miRNAs in total, 586 of them were not part of the screening. The miRNAs included in the                 
screening target 2535 different genes with strong evidence, and 15053 different genes            
with less strong evidence. There are 1363 miRNAs that do not target any genes with               
strong evidence, but only 33 of them do not target any genes with at least less strong                 
evidence. For this reason, we decided to include less strong evidence in the miRNA gene               
target profiles. This means that each miRNA was described with 15053 binary features,             
each feature denoting the targeting of a particular gene.  

We defined a classification problem: a miRNA is interesting, if it significantly reduces the              
heart muscle cell proliferation and does not affect the fibroblast proliferation. The second             
round of screening on heart muscle cells was better for determining how much a miRNA               
reduces the proliferation, so we disregarded the results of round 1. Specifically, miRNAs             
were interesting if they resulted in muscle cell proliferation below 0.5 (in round 2) and               
fibroblast proliferation between 0.8 and 1.2 (1 fold proliferation means no effect). This             
labeling was only possible for the 852 miRNAs that were screened for both fibroblast and               
muscle cell proliferation. The rest were unlabeled. 

On this data, we constructed a PCT for predicting whether a miRNA is interesting, as well                
as a PCT that predicts the fibroblast and muscle cell proliferation directly (multi-target             
regression task). The trees were then inspected to see which genes affect the predictions              
and in what way. We also constructed ensembles of PCTs for both classification and              
multi-target regression tasks and used them to perform feature ranking. The importance of             
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a feature (gene) is determined by the number of times it is used for tests in the trees, and                   
how high in the trees it appears (the lower it is, the fewer examples it influences, lowering                 
its importance). 

4.2 From miRNAs to compounds 

Like miRNAs, compounds can also be described by the genes they target. To do this, we                
searched the PubChem database to find all compounds that target at least one of the               
15053 genes used to describe the miRNAs. This gave us 532149 compounds in total,              
however no compounds were found that target 12846 of the genes. 

We used the multi-target regression ensemble of PCTs learned on the miRNA screening             
data to predict the fibroblast and muscle cell proliferation effect of these compounds. This              
gave us a long list of candidates for inspection that we again filtered and clustered as                
described previously for the Alpha SMA analysis. 

Additionally, we tried to determine what structures in the compounds affect the proliferation             
effect. To do this, we described the compounds with MACCs key fingerprints. They are              
166 dimensional binary vectors where every component corresponds to a specific           
structural pattern in the molecule (1 if present, 0 if not). While ECFPs typically give better                
predictive performance, MACCs keys are much easier to interpret, because of the bijection             
between the fingerprint bits and molecular structures. We performed feature ranking of the             
fingerprints using our predicted proliferation effects as the targets, to see which molecular             
substructures are the most important. 

4.3 From genes to pathways 

We also tried an alternative approach to describe the miRNAs. In the previous analysis,              
each miRNA was described with 15000-dimensional binary vectors, which was a very            
sparse representation. However, multiple different genes are a part of the same biological             
pathway, meaning they can affect the proliferation in the same way. Instead of describing              
the miRNAs with the genes they target, we can describe them with the pathways that the                
targeted genes are a part of. This way we compress the representation and make it less                
sparse, hopefully without losing much of the relevant information for making the            
predictions. 

To get the pathway representation of miRNAs, we used the KEGG database to find which               
pathways are associated with which genes. There are 330 pathways in the KEGG             
database for homo sapiens. Using these descriptions, we repeated the analysis performed            
on gene descriptions earlier. 

 

5. Summary 
We used the measurements of Alpha Smooth Muscle Actin (SMA) and Collagen intensities             
to build a predictive model. With it, we predicted the intensities for all the compounds in the                 
ChEMBL database. In collaboration with experts from ICGEB, these compounds were           
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filtered and clustered so that the most appropriate drug candidate was found. Initial             
experiments confirmed the candidate’s potential, further validation is in progress. 

We used the measurements of fibroblast and heart smooth muscle cell proliferation to try              
to discover which genes and biological pathways are responsible for lower heart smooth             
muscle cell proliferation, without affecting the fibroblast proliferation. With this information           
we can then go on to find drugs that inhibit those genes/pathways. That would result in                
better heart muscle regeneration, without toxic effects (affecting fibroblast). 
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